

Software testing is one of the most important steps in development of any modern
product. Software testing provides us with information about the quality of the software
product and also points out bugs that might be present in the software. Inadequate
testing or failure to fix problems noticed in test results has been the reason for a lot of
accidents and wasted resources. There are different forms of testing, some of the most
widely used include:

White-box testing verifies the internal structures of a program. This means that in white
box testing, we are more interested in the workings of the source code than the
functionality provided to the end user. White-box testing is very efficient in finding
hidden errors and optimizing code base, but one disadvantage is that it does not help us
fine unimplemented or missing issues. White-box testing can be used in Unit testing,
Integration testing and Regression testing. Some important types of white-box testing
include:

- Control Flow Testing
- Branch Testing
- Basis Path Testing
- Data Flow Testing
- Loop Testing

In our project, We will be applying White-box testing to analyze the program structure
and attempt to find any bugs or programming errors.

Some of the common Errors encountered during software programming include:

- Functionality Errors
- Communication Errors.
- Syntax Errors.
- Error handling errors.
- Control Flow and Calculation Errors.

We will not be exploring syntax errors because we are working with a compiled
language (C++) and the programmer is informed of all the syntax errors at compile time.
We will pay more attention to Communication, Control Flow and Error handling errors.

White-Box Testing for Solar Tracking Device Documentation
Created by Sorin Liviu Jurj and Raul Rotar

- White Box testing.
- Black Box testing.
- Visual Testing.

Communication errors are errors in communication from software to end-user or
between within the software. In our project we will be pay particular attention to
communication errors within the software because we have 2 communication links, the
first is between the server and secondary microcontroller (MQTT over TCP/IP), and the
second is between the primary (Arduino Uno) and Secondary microcontroller
(ESP8266).
Error handling errors arise when there is no proper structure in place to handle
unexpected values or actions in the program. In our project Such unexpected actions
could be hardware faults, circuit noise e.t.c.

Control flow of a software decides what it will do next or what action it will take under
certain conditions. Errors in control flow can lead to buffer overflow, unpredictable
system states and a host of other problems.

In our Firmware we have identified the possible error points in the system using our
internal knowledge of the firmware structure and tested it using a unit testing library for
the Arduino Platform, AIUnit.
AIUnit is a unit testing framework that draws inspiration from the Google Test and
Arduino Unit APIs. You can read more about AIUnit here
https://github.com/bxparks/AUnit

Implementation
Here is a brief description of the implementation of the testing techniques on the
ESP8266 firmware, which acts like a middle man between the arduino uno and the mqtt
server.

The first tests (displayed in fig. 1), test to make sure that the ssid, password and server
addresses provided are valid. This test checks if the values are int the alphanumeric
range.
A wrong ssid, password, or mqtt server address by the user will lead to connection
failure as the device will not be able to connect to the wifi or the mqtt broker address.

https://github.com/bxparks/AUnit

Fig.1

Another possible error point which we have tested is the mqtt Topic array. This is the
topic to which the mqtt client subscribes in order to receive messages from the mqtt

broker. This topic is unique for each instance of the device, therefore we have to
generate them dynamically using the Unique Identification number of the
microcontroller. We read this unique identification number and use it to generate a
string which is then our Incoming messages topic, is there is an error in this topic we will
not be able to receive any incoming messages from the broker and our device will fail.
Therefore knowing the expected length of the Unique identification number, we run a
test which which will ensure that the Incoming messages topic is not longer than this
length, and that all the characters are alphanumeric characters.

Fig.2

The most error prone part of this firmware is the Incoming data values. These are the
values that are received from the mqtt broker and forwarded to the arduino uno. The
values could be corrupted as a result of communication errors or unexpected user input.
If we successfully forward a wrong value from to the arduino uno, this can lead to
unexpected or random behaviour of the stepper motors. Therefore we test to make sure
that the values received are within a specified range.

Fig.3

It is not uncommon for internet communication to drop unexpectedly, or for MQTT
clients to disconnect from the broker. In a situation like this the device needs to be able
to detect that the connection has been lost and attempt to reconnect. In this case we
implement a control flow test, shown in Fig.4, to check the mqtt connection and attempt
to reconnect if connection has been lost.

Fig.4

Different routers allow connections at different speeds, some take a longer time to
authenticate before internet access is allowed, therefore it is necessary to test that the
device has been successfully connected to the router before we proceed with execution
of the program. Failure to do this will lead to data loss as the device may attempt to
send data when a connection has not been established.

Fig. 5

Uno Code
The main test on the firmware for the arduino uno code is to ensure that the data
received via serial connection is valid. Serial communication, is prone to different types
of errors especially at high speeds (e.g 115200 baud rate). If we fail to verify the
integrity of the received data, we may feed wrong values to the stepper motor controls
which can lead to unpredictable or unintended movements. Since these are unsigned
analog values, our main test is to ensure that they are not above 1024. For a more
safety critical system we can apply checksums to further validate the integrity of the
firmware.
You can read more about check sums here; https://en.wikipedia.org/wiki/Checksum

https://en.wikipedia.org/wiki/Checksum

In conclusion, we have implemented a lot of good programming practices using our
result form testing and based on our development experience to reduce error points and
optimise the firmware. For example, we have minimized the use of buffers and arrays,
instead we opted to use individual objects to minimize memory fragmentation and avoid
buffer overflow errors. We have also minimized the use ot strings which are notorious
for bad memory management on the arduino platform.
The arduino bootloader, checks the firmware while it is being uploaded using
checksums for each data segment uploaded, thus eliminating or minimizing the
possibility of flash errors. Flash errors are detected while uploading and the user is
prompted to attempt the upload process again.

We have also implemented a functionality that enables the arduino microcontroller to
report live analog values from the solar sensors to the mqtt broker. This data gives the
user real time feedback on the results of the movement of the stepper motors and can
be gathered by the end user for storage visualization and further analysis,

