Ich habe seit ein paar Wochen keinen Beitrag geschrieben, da ich beschäftigt in Rumänien war wegen mein Promotionsstudium die ich in halbes Jahr erfolgreich beenden möchte.
Heute habe ich etwas sehr interessant gefunden, und zwar: Deep Learning Drizzle oder Deep Learning Nieselregen, wenn Sie möchten :))
Bringen Sie sich in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision und NLP ein, indem Sie von diesen aufregenden Vorträgen lernen!
Deep Learning (Deep Neural Networks)
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Neural Networks for Machine Learning | Geoffrey Hinton, University of Toronto | Lecture-Slides CSC321-tijmen |
YouTube-Lectures UofT-mirror |
2012 2014 |
2. | Neural Networks Demystified | Stephen Welch, Welch Labs | Suppl. Code | YouTube-Lectures | 2014 |
3. | Deep Learning at Oxford | Nando de Freitas, Oxford University | Oxford-ML | YouTube-Lectures | 2015 |
4. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n | None |
2015 |
5. | CS231n: CNNs for Visual Recognition | Andrej Karpathy, Stanford University | CS231n | YouTube-Lectures | 2016 |
6. | CS231n: CNNs for Visual Recognition | Justin Johnson, Stanford University | CS231n | YouTube-Lectures | 2017 |
7. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2015 |
8. | CS224d: Deep Learning for NLP | Richard Socher, Stanford University | CS224d | YouTube-Lectures | 2016 |
9. | CS224n: NLP with Deep Learning | Richard Socher, Stanford University | CS224n | YouTube-Lectures | 2017 |
10. | Neural Networks | Hugo Larochelle, Université de Sherbrooke | Neural-Networks | YouTube-Lectures | 2016 |
11. | Deep Learning | Andrew Ng, Stanford University | CS230 | None |
2018 |
12. | Bay Area Deep Learning | Many legends, Stanford | None |
YouTube-Lectures | 2016 |
13. | UvA Deep Learning | Efstratios Gavves, University of Amsterdam(UvA) | UvA-DLC | Lecture-Videos | 2018 |
14. | Advanced Deep Learning and Reinforcement Learning | Many legends, DeepMind | None |
YouTube-Lectures | 2018 |
15. | Deep Learning | Francois Fleuret, EPFL | EE-59 | None |
2019 |
16. | Deep Learning | Francois Fleuret, EPFL | EE-59 | Video-Lectures | 2018 |
17. | Deep Learning for Perception | Dhruv Batra, Virginia Tech | ECE-6504 | YouTube-Lectures | 2015 |
18. | Introduction to Deep Learning | Alexander Amini, Harini Suresh, MIT | 6.S191 | YouTube-Lectures | 2018 |
19. | Deep Learning for Self-Driving Cars | Lex Fridman, MIT | 6.S094 | YouTube-Lectures | 2017-2018 |
20. | MIT Deep Learning | Many Researchers, Lex Fridman, MIT | 6.S094, 6.S091, 6.S093 | YouTube-Lectures | 2019 |
21. | Introduction to Deep Learning | Bhiksha Raj and many others, CMU | 11-485/785 | YouTube-Lectures | S2018 |
22. | Introduction to Deep Learning | Bhiksha Raj and others, CMU | 11-485/785 | YouTube-LecturesRecitation-Inclusive | F2018 |
23. | Deep Learning Specialization | Andrew Ng, Stanford | DL.AI | YouTube-Lectures | 2017-2018 |
24. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2015 |
25. | Deep Learning | Ali Ghodsi, University of Waterloo | STAT-946 | YouTube-Lectures | F2017 |
26. | Deep Learning | Mitesh Khapra, IIT-Madras | CS7015 | YouTube-Lectures | 2018 |
27. | Deep Learning for AI | UPC Barcelona | DLAI-2017 DLAI-2018 |
YouTube-Lectures | 2017-2018 |
-2. | Deep Learning Bookcompanion videos | Ian Goodfellow and others | DL-book slides | YouTube-Lectures | 2017 |
-1. | Neural Networks | Grant Sanderson | None |
YouTube-Lectures | 2017-2018 |
Machine Learning Fundamentals
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Linear Algebra | Gilbert Strang, MIT | 18.06 SC | YouTube-Lectures | 2011 |
2. | Probability Primer | Jeffrey Miller (mathematical monk), Brown University | None |
YouTube-Lectures | 2011 |
3. | Probability and Statistics | Michel van Biezen | None |
YouTube-Lectures | 2015 |
4. | Linear Algebra: An in-depth Introduction | Pavel Grinfeld | None |
Part-1 Part-2 Part-3 Part-4 |
2015- 2017 |
5. | Essence of Linear Algebra | Grant Sanderson | None |
YouTube-Lectures | 2016 |
6. | Essence of Calculus | Grant Sanderson | None |
YouTube-Lectures | 2017-2018 |
7. | Mathematics for Machine Learning(Linear Algebra, Calculus) | David Dye, Samuel Cooper, and Freddie Page, IC-London | MML | YouTube-Lectures | 2018 |
8. | Machine Learning Fundamentals | Sanjoy Dasgupta, UC-San Diego | MLF-slides | YouTube-Lectures | 2018 |
Optimization for Machine Learning
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Convex Optimization | Stephen Boyd, Stanford University | ee364a | YouTube-Lectures | 2008 |
2. | Optimization for Machine Learning | S V N Vishwanathan, Purdue University | None |
YouTube-Lectures | 2011 |
3. | Optimization | Geoff Gordon & Ryan Tibshirani, CMU | 10-725 | YouTube-Lectures | 2012 |
4. | Convex Optimization | Joydeep Dutta, IIT-Kanpur | cvx-nptel | YouTube-Lectures | 2013 |
5. | Algorithmic Aspects of Machine Learning | Ankur Moitra, MIT | 18.409-AAML | YouTube-Lectures | S2015 |
6. | Advanced Algorithms | Ankur Moitra, MIT | 6.854-AA | YouTube-Lectures | S2016 |
7. | Convex Optimization | Ryan Tibshirani, CMU | cvx-opt | YouTube-Lectures | F2018 |
8. | Modern Algorithmic Optimization | Yurii Nesterov, UCLouvain | None |
YouTube-Lectures | 2018 |
General Machine Learning
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | CS229: Machine Learning | Andrew Ng, Stanford University | CS229-old CS229-new |
YouTube-Lectures | 2007 |
2. | Machine Learning | Jeffrey Miller (mathematical monk), Brown University | None |
YouTube-Lectures | 2011 |
3. | Machine Learning and Data Mining | Nando de Freitas, University of British Columbia | CPSC-340 | YouTube-Lectures | 2012 |
4. | Learning from Data | Yaser Abu-Mostafa, CalTech | CS156 | YouTube-Lectures | 2012 |
5. | Machine Learning | Rudolph Triebel, TUM | Machine Learning | YouTube-Lectures | 2013 |
6. | Pattern Recognition | Sukhendu Das, IIT-M and C.A. Murthy, ISI-Calcutta | PR-NPTEL | YouTube-Lectures | 2014 |
7. | Introduction to Machine Learning | Katie Malone, Sebastian Thrun, Udacity | ML-Udacity | YouTube-Lectures | 2015 |
8. | Introduction to Machine Learning | Dhruv Batra, Virginia Tech | ECE-5984 | YouTube-Lectures | 2015 |
9. | Statistical Learning – Classification | Ali Ghodsi, University of Waterloo | STAT-441 | YouTube-Lectures | 2015 |
10 | Machine Learning Theory | Shai Ben-David, University of Waterloo | None |
YouTube-Lectures | 2015 |
11. | Introduction to Machine Learning | Alex Smola, CMU | 10-701 | YouTube-Lectures | S2015 |
12. | ML: Supervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
13. | ML: Unsupervised Learning | Michael Littman, Charles Isbell, Pushkar Kolhe, GaTech | ML-Udacity | YouTube-Lectures | 2015 |
14. | Machine Learning | Pedro Domingos, UWashington | CSEP-546 | YouTube-Lectures | S2016 |
15. | Statistical Machine Learning | Larry Wasserman, CMU | None |
YouTube-Lectures | S2016 |
16. | Machine Learning with Large Datasets | William Cohen, CMU | 10-605 | YouTube-Lectures | F2016 |
17. | Statistical Learning – Classification | Ali Ghodsi, University of Waterloo | None |
YouTube-Lectures | 2017 |
18. | Machine Learning | Andrew Ng, Stanford University | Coursera-ML | YouTube-Lectures | 2017 |
19. | Machine Learning | Roni Rosenfield, CMU | 10-601 | YouTube-Lectures | 2017 |
20. | Statistical Machine Learning | Ryan Tibshirani, Larry Wasserman, CMU | 10-702 | YouTube-Lectures | S2017 |
21. | Machine Learning for Intelligent Systems | Kilian Weinberger, Cornell University | CS4780 | YouTube-Lectures | F2018 |
22. | Statistical Learning Theory and Applications | Tomaso Poggio, Lorenzo Rosasco, Sasha Rakhlin | 9.520/6.860 | YouTube-Lectures | F2018 |
23. | Machine Learning and Data Mining | Mike Gelbart, University of British Columbia | CPSC-340 | YouTube-Lectures | 2018 |
24. | Foundations of Machine Learning | David Rosenberg, Bloomberg | FOML | YouTube-Lectures | 2018 |
25. | Introduction to Machine Learning | Andreas Krause, ETH Zuerich | IntroML | YouTube-Lectures | 2018 |
26. | Advanced Machine Learning | Joachim Buhmann, ETH Zuerich | AML-18 | YouTube-Lectures | 2018 |
Reinforcement Learning
S.No | Course Name | University/Instructor(s) | Course Webpage | Video Lectures | Year |
---|---|---|---|---|---|
1. | Short Course on Reinforcement Learning | Satinder Singh, UMichigan | None |
YouTube-Lectures | 2011 |
2. | Approximate Dynamic Programming | Dimitri P. Bertsekas, MIT | Lecture-Slides | YouTube-Lectures | 2014 |
3. | Introduction to Reinforcement Learning | David Silver, DeepMind | UCL-RL | YouTube-Lectures | 2015 |
4. | Reinforcement Learning | Charles Isbell, Chris Pryby, GaTech; Michael Littman, Brown | RL-Udacity | YouTube-Lectures | 2015 |
5. | Reinforcement Learning | Balaraman Ravindran, IIT Madras | RL-IITM | YouTube-Lectures | 2016 |
6. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | S2017 |
7. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294 | YouTube-Lectures | F2017 |
8. | Deep RL Bootcamp | Many legends, UC Berkeley | Deep-RL | YouTube-Lectures | 2017 |
9. | Deep Reinforcement Learning | Sergey Levine, UC Berkeley | CS-294-112 | YouTube-Lectures | 2018 |
10. | Reinforcement Learning | Pascal Poupart, University of Waterloo | CS-885 | YouTube-Lectures | 2018 |
11. | Deep Reinforcement Learning and Control | Katerina Fragkiadaki and Tom Mitchell, CMU | 10-703 | YouTube-Lectures | 2018 |
Probabilistic Graphical Models – (Foundation for Graph Neural Networks)
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Probabilistic Graphical Models | Many Legends, MPI-IS | MLSS-Tuebingen | YouTube-Lectures | 2013 |
2. | Probabilistic Modeling and Machine Learning | Zoubin Ghahramani, University of Cambridge | WUST-Wroclaw | YouTube-Lectures | 2013 |
3. | Probabilistic Graphical Models | Eric Xing, CMU | 10-708 | YouTube-Lectures | 2014 |
4. | Learning with Structured Data: An Introduction to Probabilistic Graphical Models | Christoph Lampert, IST Austria | None |
YouTube-Lectures | 2016 |
5. | Probabilistic Graphical Models | Nicholas Zabaras, University of Notre Dame | PGM | YouTube-Lectures | 2018 |
Natural Language Processing – (More Applied)
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning for Natural Language Processing | Nils Reimers, TU Darmstadt | DL4NLP | YouTube-Lectures | 2015-2017 |
2. | Deep Learning for Natural Language Processing | Many Legends, DeepMind-Oxford | DL-NLP | YouTube-Lectures | 2017 |
3. | Deep Learning for Speech & Language | UPC Barcelona | DL-SL | Lecture-Videos | 2017 |
4. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLPCode | YouTube-Lectures | 2017 |
5. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4-NLP | YouTube-Lectures | 2018 |
6. | Deep Learning for NLP | Min-Yen Kan, NUS | CS-6101 | YouTube-Lectures | 2018 |
7. | Neural Networks for Natural Language Processing | Graham Neubig, CMU | NN4NLP | YouTube-Lectures | 2019 |
Automatic Speech Recognition
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning for Speech & Language | UPC Barcelona | DL-SL | Lecture-Videos YouTube-Videos |
2017 |
2. | Speech and Audio in the Northeast | Many Legends, Google NYC | SANE-15 | YouTube-Videos | 2015 |
3. | Speech and Audio in the Northeast | Many Legends, Google NYC | SANE-17 | YouTube-Videos | 2017 |
4. | Speech and Audio in the Northeast | Many Legends, Google Cambridge | SANE-18 | YouTube-Videos | 2018 |
-1. | Deep Learning for Speech Recognition | Many Legends, AoE | None |
YouTube-Videos | 2015-2018 |
Modern Computer Vision
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Computer Vision – (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2012 |
2. | Computer Vision – (classical) | Mubarak Shah, UCF | CAP-5415 | YouTube-Lectures | 2014 |
3. | Multiple View Geometry(classical) | Daniel Cremers, TUM | mvg | YouTube-Lectures | 2013 |
4. | Introduction to Computer Vision (foundation) | Aaron Bobick, Irfan Essa, Arpan Chakraborty | CV-Udacity | YouTube-Lectures | 2016 |
5. | Autonomous Navigation for Flying Robots | Juergen Sturm, TUM | Autonavx | YouTube-Lectures | 2014 |
6. | SLAM – Mobile Robotics | Cyrill Stachniss, Universitaet Freiburg | RobotMapping | YouTube-Lectures | 2014 |
7. | Computational Photography | Irfan Essa, David Joyner, Arpan Chakraborty | CP-Udacity | YouTube-Lectures | 2015 |
8. | Deep Learning for Computer Vision | UPC Barcelona | DLCV-16 DLCV-17 DLCV-18 |
YouTube-Lectures | 2016-2018 |
9. | Convolutional Neural Networks | Andrew Ng, Stanford University | DeepLearning.AI | YouTube-Lectures | 2017 |
10. | Variational Methods for Computer Vision | Daniel Cremers, TUM | VMCV | YouTube-Lectures | 2017 |
11. | Winter School on Computer Vision | Lots of Legends, Israel Institute for Advanced Studies | WS-CV | YouTube-Lectures | 2017 |
12. | Deep Learning for Visual Computing | Debdoot Sheet, IIT-Kgp | NptelNotebooks | YouTube-Lectures | 2018 |
13. | Modern Robotics | Kevin Lynch, Northwestern Robotics | modern-robot | YouTube-Lectures | 2018 |
Boot Camps or Summer Schools
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Deep Learning, Feature Learning | Lots of Legends, IPAM UCLA | GSS-2012 | YouTube-Lectures | 2012 |
2. | Big Data Boot Camp | Many Legends, Simons Institute | Big Data | YouTube-Lectures | 2013 |
3 | Mathematics of Signal Processing | Many Legends, Hausdorff Institute for Mathematics | SigProc | YouTube-Lectures | 2016 |
4. | Microsoft Research – Machine Learning Course | S V N Vishwanathan and Prateek Jain MS-Research | None |
YouTube-Lectures | 2016 |
5. | Deep Learning Summer School | Lots of Legends, Université de Montréal | DL-SS-16 | YouTube-Lectures | 2016 |
6. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLAAS | YouTube-Lectures Video-Lectures |
2016-2017 |
7. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLAAS | Video Lectures | 2017-2018 |
8. | Representation Learning | Many Legends, Simons Institute | RepLearn | YouTube-Lectures | 2017 |
9. | Foundations of Machine Learning | Many Legends, Simons Institute | ML-BootCamp | YouTube-Lectures | 2017 |
10. | Optimization, Statistics, and Uncertainty | Many Legends, Simons Institute | Optim-Stats | YouTube-Lectures | 2017 |
11. | Deep Learning: Theory, Algorithms, and Applications | Many Legends, TU-Berlin | DL: TAA | YouTube-Lectures | 2017 |
12. | Foundations of Data Science | Many Legends, Simons Institute | DS-BootCamp | YouTube-Lectures | 2018 |
13. | Deep|Bayes | Many Legends, HSE Moscow | DeepBayes.ru | YouTube-Lectures | 2018 |
14. | New Deep Learning Techniques | Many Legends, IPAM UCLA | IPAM-Workshop | YouTube-Lectures | 2018 |
15. | Machine Learning Advances and Applications Seminar | Lots of Legends, Fields Institute, University of Toronto | MLASS | Video Lectures | 2018-2019 |
16. | MIFODS- ML, Stats, ToC seminar | Lots of Legends, MIT | MIFODS-seminar | Lecture-videos | 2018-2019 |
Bird’s Eye view of Artificial (General) Intelligence
S.No | Course Name | University/Instructor(s) | Course WebPage | Lecture Videos | Year |
---|---|---|---|---|---|
1. | Artificial General Intelligence | Lots of Legends, MIT | 6.S099-AGI | Lecture-Videos | 2018-2019 |
2. | AI Podcast | Lots of Legends, MIT | AI-Pod | YouTube-Lectures | 2018-2019 |
3. | NYU – AI Seminars | Lots of Legends, NYU | modern-AI | YouTube-Lectures | 2017-now |
Neueste Kommentare